states.pusey_barrett_rudolph¶
Construct a set of mutually unbiased bases.
Functions¶
|
Produce set of Pusey-Barrett-Rudolph (PBR) states [1]. |
Module Contents¶
- states.pusey_barrett_rudolph.pusey_barrett_rudolph(n, theta)¶
Produce set of Pusey-Barrett-Rudolph (PBR) states [1].
Let \(\theta \in [0, \pi/2]\) be an angle. Define the states
\[|\psi_0\rangle = \cos(\frac{\theta}{2})|0\rangle + \sin(\frac{\theta}{2})|1\rangle \quad \text{and} \quad |\psi_1\rangle = \cos(\frac{\theta}{2})|0\rangle - \sin(\frac{\theta}{2})|1\rangle.\]For some \(n \geq 1\), define a basis of \(2^n\) states where
\[|\Psi_i\rangle = |\psi_{x_i}\rangle \otimes \cdots \otimes |\psi_{x_n}\rangle.\]These PBR states are defined in Equation (A6) from [1].
Examples
Generating the PBR states can be done by simply invoking the function with a given choice of
n
andtheta
:>>> from toqito.states import pusey_barrett_rudolph >>> pusey_barrett_rudolph(n=1, theta=0.5) [array([[0.96891242], ... [0.24740396]]), array([[ 0.96891242], ... [-0.24740396]])]
References
[1] (1,2,3)Matthew F. Pusey, Jonathan Barrett, and Terry Rudolph. On the reality of the quantum state. Nature Physics, 8(6):475–478, May 2012. URL: http://dx.doi.org/10.1038/nphys2309, doi:10.1038/nphys2309.
- Parameters:
n (int) – The number of states in the set.
theta (float) – Angle parameter that defines the states.
- Returns:
Vector of trine states.
- Return type:
list[numpy.ndarray]