state_props.von_neumann_entropy¶
Calculates the Von neumann entropy metric of a quantum state.
Functions¶
|
Compute the von Neumann entropy of a density matrix [2]. |
Module Contents¶
- state_props.von_neumann_entropy.von_neumann_entropy(rho)¶
Compute the von Neumann entropy of a density matrix [2].
Let \(P \in \text{Pos}(\mathcal{X})\) be a positive semidefinite operator, for a complex Euclidean space \(\mathcal{X}\). Then one defines the von Neumann entropy as
\[H(P) = H(\lambda(P)),\]where \(\lambda(P)\) is the vector of eigenvalues of \(P\) and where the function \(H(\cdot)\) is the Shannon entropy function defined as
\[\begin{split}H(u) = -\sum_{\substack{a \in \Sigma \\ u(a) > 0}} u(a) \text{log}(u(a)),\end{split}\]where the \(\text{log}\) function is assumed to be the base-2 logarithm, and where \(\Sigma\) is an alphabet where \(u \in [0, \infty)^{\Sigma}\) is a vector of nonnegative real numbers indexed by \(\Sigma\).
Further information for computing the von Neumann entropy of a density matrix can be found in Section: “Definitions Of Quantum Entropic Functions” from [1]).
Examples
Consider the following Bell state:
\[u = \frac{1}{\sqrt{2}} \left(|00 \rangle + |11 \rangle \right) \in \mathcal{X}.\]The corresponding density matrix of \(u\) may be calculated by:
\[\begin{split}\rho = u u^* = \frac{1}{2} \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 \end{pmatrix} \in \text{D}(\mathcal{X}).\end{split}\]Calculating the von Neumann entropy of \(\rho\) in
toqito
can be done as follows.>>> from toqito.state_props import von_neumann_entropy >>> import numpy as np >>> test_input_mat = np.array( ... [[1 / 2, 0, 0, 1 / 2], [0, 0, 0, 0], ... [0, 0, 0, 0], [1 / 2, 0, 0, 1 / 2]] ... ) >>> von_neumann_entropy(test_input_mat) np.float64(5.88418203051333e-15)
Consider the density operator corresponding to the maximally mixed state of dimension two
\[\begin{split}\rho = \frac{1}{2} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.\end{split}\]As this state is maximally mixed, the von Neumann entropy of \(\rho\) is equal to one. We can see this in
toqito
as follows.>>> from toqito.state_props import von_neumann_entropy >>> import numpy as np >>> rho = 1/2 * np.identity(2) >>> von_neumann_entropy(rho) np.float64(1.0)
References
[1]John Watrous. The Theory of Quantum Information. Cambridge University Press, 2018. URL: https://johnwatrous.com/wp-content/uploads/TQI.pdf, doi:10.1017/9781316848142.
- Parameters:
rho (numpy.ndarray) – Density operator.
- Returns:
The von Neumann entropy of
rho
.- Return type:
float