channel_ops.choi_to_kraus

Computes a list of Kraus operators from the Choi matrix.

Functions

choi_to_kraus(choi_mat[, tol, dim])

Compute a list of Kraus operators from the Choi matrix from [1].

Module Contents

channel_ops.choi_to_kraus.choi_to_kraus(choi_mat, tol=1e-09, dim=None)

Compute a list of Kraus operators from the Choi matrix from [1].

Note that unlike the Choi or natural representation of operators, the Kraus representation is not unique.

If the input channel maps \(M_{r,c}\) to \(M_{x,y}\) then dim should be the list [[r,x], [c,y]]. If it maps \(M_m\) to \(M_n\), then dim can simply be the vector [m,n].

For completely positive maps the output is a single flat list of numpy arrays since the left and right Kraus maps are the same.

This function has been adapted from [1] and QETLAB [1].

Examples

Consider taking the Kraus operators of the Choi matrix that characterizes the “swap operator” defined as

\[\begin{split}\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}\end{split}\]

The corresponding Kraus operators of the swap operator are given as follows,

\[\begin{split}\begin{equation} \big[ \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \big], \big[ \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \big], \big[ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \big], \big[ \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \big] \end{equation}\end{split}\]

This can be verified in toqito as follows.

>>> import numpy as np
>>> from toqito.channel_ops import choi_to_kraus
>>> choi_mat = np.array([[1, 0, 0, 0], [0, 0, 1, 0], [0, 1, 0, 0], [0, 0, 0, 1]])
>>> kraus_ops = choi_to_kraus(choi_mat)
>>> kraus_ops
[[array([[ 0.        ,  0.70710678],
       [-0.70710678,  0.        ]]), array([[-0.        , -0.70710678],
       [ 0.70710678, -0.        ]])], [array([[0.        , 0.70710678],
       [0.70710678, 0.        ]]), array([[0.        , 0.70710678],
       [0.70710678, 0.        ]])], [array([[1., 0.],
       [0., 0.]]), array([[1., 0.],
       [0., 0.]])], [array([[0., 0.],
       [0., 1.]]), array([[0., 0.],
       [0., 1.]])]]

See also

kraus_to_choi

References

[1]

Nathaniel Johnston. QETLAB: A MATLAB toolbox for quantum entanglement. URL: https://github.com/nathanieljohnston/QETLAB, doi:10.5281/zenodo.44637.

[2] (1,2,3)

Rigetti. Forest benchmarking. URL: https://github.com/rigetti/forest-benchmarking.

Parameters:
  • choi_mat (numpy.ndarray) – A Choi matrix

  • tol (float) – optional threshold parameter for eigenvalues/kraus ops to be discarded

  • dim (int | list[int] | numpy.ndarray) – A scalar, vector or matrix containing the input and output dimensions of Choi matrix.

Returns:

List of Kraus operators

Return type:

list[numpy.ndarray] | list[list[numpy.ndarray]]