matrix_props.is_identity¶
Checks if the matrix is an identity matrix.
Functions¶
|
Check if matrix is the identity matrix [1]. |
Module Contents¶
- matrix_props.is_identity.is_identity(mat, rtol=1e-05, atol=1e-08)¶
Check if matrix is the identity matrix [1].
For dimension \(n\), the \(n \times n\) identity matrix is defined as
\[\begin{split}I_n = \begin{pmatrix} 1 & 0 & 0 & \ldots & 0 \\ 0 & 1 & 0 & \ldots & 0 \\ 0 & 0 & 1 & \ldots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \ldots & 1 \end{pmatrix}.\end{split}\]Examples
Consider the following matrix:
\[\begin{split}A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}\end{split}\]our function indicates that this is indeed the identity matrix of dimension 3.
>>> from toqito.matrix_props import is_identity >>> import numpy as np >>> mat = np.eye(3) >>> is_identity(mat) True
Alternatively, the following example matrix \(B\) defined as
\[\begin{split}B = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}\end{split}\]is not an identity matrix.
>>> from toqito.matrix_props import is_identity >>> import numpy as np >>> mat = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) >>> is_identity(mat) False
References
- Parameters:
mat (numpy.ndarray) – Matrix to check.
rtol (float) – The relative tolerance parameter (default 1e-05).
atol (float) – The absolute tolerance parameter (default 1e-08).
- Returns:
Return
True
if matrix is the identity matrix, andFalse
otherwise.- Return type:
bool