states.domino¶
Produce a domino state.
Functions¶
Module Contents¶
- states.domino.domino(idx)¶
Produce a domino state [1][2].
The orthonormal product basis of domino states is given as
\[\begin{split}\begin{equation} \begin{aligned} |\phi_0\rangle = |1\rangle |1 \rangle, \qquad |\phi_1\rangle = |0 \rangle \left(\frac{|0 \rangle + |1 \rangle}{\sqrt{2}} \right), & \qquad |\phi_2\rangle = |0\rangle \left(\frac{|0\rangle - |1\rangle}{\sqrt{2}}\right), \\ |\phi_3\rangle = |2\rangle \left(\frac{|0\rangle + |1\rangle}{\sqrt{2}}\right), \qquad |\phi_4\rangle = |2\rangle \left(\frac{|0\rangle - |1\rangle}{\sqrt{2}}\right), & \qquad |\phi_5\rangle = \left(\frac{|0\rangle + |1\rangle}{\sqrt{2}}\right) |0\rangle, \\ |\phi_6\rangle = \left(\frac{|0\rangle - |1\rangle}{\sqrt{2}}\right) |0\rangle, \qquad |\phi_7\rangle = \left(\frac{|0\rangle + |1\rangle}{\sqrt{2}}\right) |2\rangle, & \qquad |\phi_8\rangle = \left(\frac{|0\rangle - |1\rangle}{\sqrt{2}}\right) |2\rangle. \end{aligned} \end{equation}\end{split}\]Returns one of the following nine domino states depending on the value of
idx
.Examples
When
idx = 0
, this produces the following Domino state\[|\phi_0 \rangle = |11 \rangle |11 \rangle.\]Using
|toqito⟩
, we can see that this yields the proper state.from toqito.states import domino domino(0)
array([[0], [0], [0], [0], [1], [0], [0], [0], [0]])
When
idx = 3
, this produces the following Domino state\[|\phi_3\rangle = |2\rangle \left(\frac{|0\rangle + |1\rangle} {\sqrt{2}}\right)\]Using
|toqito⟩
, we can see that this yields the proper state.from toqito.states import domino domino(3)
array([[0. ], [0. ], [0. ], [0. ], [0. ], [0. ], [0. ], [0.70710678], [0.70710678]])
References
- Raises:
ValueError – Invalid value for
idx
.- Parameters:
idx (int) – A parameter in [0, 1, 2, 3, 4, 5, 6, 7, 8]
- Returns:
Domino state of index
idx
.- Return type:
numpy.ndarray