channels.reduction¶
Generates the reduction channel.
Functions¶
Module Contents¶
- channels.reduction.reduction(dim, k=1)¶
Produce the reduction map or reduction channel [1].
If
k = 1
, this returns the Choi matrix of the reduction map which is a positive map ondim
-by-dim
matrices. For a different value ofk
, this yields the Choi matrix of the map defined by:\[R(X) = k * \text{Tr}(X) * \mathbb{I} - X,\]where \(\mathbb{I}\) is the identity matrix. This map is \(k\)-positive.
Examples
Using
toqito
, we can generate the \(3\)-dimensional (or standard) reduction map as follows.>>> from toqito.channels import reduction >>> reduction(3) array([[ 0., 0., 0., 0., -1., 0., 0., 0., -1.], [ 0., 1., 0., 0., 0., 0., 0., 0., 0.], [ 0., 0., 1., 0., 0., 0., 0., 0., 0.], [ 0., 0., 0., 1., 0., 0., 0., 0., 0.], [-1., 0., 0., 0., 0., 0., 0., 0., -1.], [ 0., 0., 0., 0., 0., 1., 0., 0., 0.], [ 0., 0., 0., 0., 0., 0., 1., 0., 0.], [ 0., 0., 0., 0., 0., 0., 0., 1., 0.], [-1., 0., 0., 0., -1., 0., 0., 0., 0.]])
References
- Parameters:
dim (int) – A positive integer (the dimension of the reduction map).
k (int) – If this positive integer is provided, the script will instead return the Choi matrix of the following linear map: Phi(X) := K * Tr(X)I - X.
- Returns:
The reduction map.
- Return type:
numpy.ndarray