matrices.hadamard¶
Generates a Hadamard matrix.
Functions¶
|
Produce a |
|
Calculate the bit-wise Hamming distance of |
Module Contents¶
- matrices.hadamard.hadamard(n_param=1)¶
Produce a
2^{n_param}
dimensional Hadamard matrix [1].The standard Hadamard matrix that is often used in quantum information as a two-qubit quantum gate is defined as
\[\begin{split}H_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}\end{split}\]In general, the Hadamard matrix of dimension
2^{n_param}
may be defined as\[\left( H_n \right)_{i, j} = \frac{1}{2^{\frac{n}{2}}} \left(-1\right)^{i \dot j}\]Examples
The standard 2-qubit Hadamard matrix can be generated in
toqito
as>>> from toqito.matrices import hadamard >>> hadamard(1) array([[ 0.70710678, 0.70710678], [ 0.70710678, -0.70710678]])
References
- Parameters:
n_param (int) – A non-negative integer (default = 1).
- Returns:
The Hadamard matrix of dimension
2^{n_param}
.- Return type:
numpy.ndarray
- matrices.hadamard._hamming_distance(x_param)¶
Calculate the bit-wise Hamming distance of
x_param
from 0.The Hamming distance is the number 1s in the integer
x_param
.- Parameters:
x_param (int) – A non-negative integer.
- Returns:
The hamming distance of
x_param
from 0.- Return type:
int