states.horodecki

Horodecki state.

Module Contents

Functions

horodecki(a_param[, dim])

Produce a Horodecki state [1, 2].

states.horodecki.horodecki(a_param, dim=None)

Produce a Horodecki state [1, 2].

Returns the Horodecki state in either \((3 \otimes 3)\)-dimensional space or \((2 \otimes 4)\)-dimensional space, depending on the dimensions in the 1-by-2 vector dim.

The Horodecki state was introduced in [1] which serves as an example in \(\mathbb{C}^3 \otimes \mathbb{C}\) or \(\mathbb{C}^2 \otimes \mathbb{C}^4\) of an entangled state that is positive under partial transpose (PPT). The state is PPT for all \(a \in [0, 1]\) and separable only for a_param = 0 or a_param = 1.

These states have the following definitions:

\[\begin{split}\begin{equation} \rho_a^{3 \otimes 3} = \frac{1}{8a + 1} \begin{pmatrix} a & 0 & 0 & 0 & a & 0 & 0 & 0 & a \\ 0 & a & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & a & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & a & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & a & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & a & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{2} \left( 1 + a \right) & 0 & \frac{1}{2} \sqrt{1 - a^2} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & a & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{2} \sqrt{1 - a^2} & 0 & \frac{1}{2} \left(1 + a \right) \\ \end{pmatrix}, \end{equation}\end{split}\]
\[\begin{split}\begin{equation} \rho_a^{2 \otimes 4} = \frac{1}{7a + 1} \begin{pmatrix} a & 0 & 0 & 0 & 0 & a & 0 & 0 \\ 0 & a & 0 & 0 & 0 & 0 & a & 0 \\ 0 & 0 & a & 0 & 0 & 0 & 0 & a \\ 0 & 0 & 0 & a & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{2} \left(1 + a\right) & 0 & 0 & \frac{1}{2}\sqrt{1 -a^2} \\ a & 0 & 0 & 0 & 0 & a & 0 & 0 \\ 0 & a & 0 & 0 & 0 & 0 & a & 0 \\ 0 & 0 & a & 0 & \frac{1}{2}\sqrt{1 - a^2} & 0 & 0 & \frac{1}{2}\left(1 +a \right) \end{pmatrix}. \end{equation}\end{split}\]

Note

Refer to [2] (specifically equations (1) and (2)) for more information on this state and its properties. The 3x3 Horodecki state is defined explicitly in Section 4.1 of [1] and the 2x4 Horodecki state is defined explicitly in Section 4.2 of [1].

Examples

The following code generates a Horodecki state in \(\mathbb{C}^3 \otimes \mathbb{C}^3\)

>>> from toqito.states import horodecki
>>> horodecki(0.5, [3, 3])
array([[0.1       , 0.        , 0.        , 0.        , 0.1       ,
        0.        , 0.        , 0.        , 0.1       ],
       [0.        , 0.1       , 0.        , 0.        , 0.        ,
        0.        , 0.        , 0.        , 0.        ],
       [0.        , 0.        , 0.1       , 0.        , 0.        ,
        0.        , 0.        , 0.        , 0.        ],
       [0.        , 0.        , 0.        , 0.1       , 0.        ,
        0.        , 0.        , 0.        , 0.        ],
       [0.1       , 0.        , 0.        , 0.        , 0.1       ,
        0.        , 0.        , 0.        , 0.1       ],
       [0.        , 0.        , 0.        , 0.        , 0.        ,
        0.1       , 0.        , 0.        , 0.        ],
       [0.        , 0.        , 0.        , 0.        , 0.        ,
        0.        , 0.15      , 0.        , 0.08660254],
       [0.        , 0.        , 0.        , 0.        , 0.        ,
        0.        , 0.        , 0.1       , 0.        ],
       [0.1       , 0.        , 0.        , 0.        , 0.1       ,
        0.        , 0.08660254, 0.        , 0.15      ]])

The following code generates a Horodecki state in \(\mathbb{C}^2 \otimes \mathbb{C}^4\).

>>> from toqito.states import horodecki
>>> horodecki(0.5, [2, 4])
array([[0.11111111, 0.        , 0.        , 0.        , 0.        ,
        0.11111111, 0.        , 0.        ],
       [0.        , 0.11111111, 0.        , 0.        , 0.        ,
        0.        , 0.11111111, 0.        ],
       [0.        , 0.        , 0.11111111, 0.        , 0.        ,
        0.        , 0.        , 0.11111111],
       [0.        , 0.        , 0.        , 0.11111111, 0.        ,
        0.        , 0.        , 0.        ],
       [0.        , 0.        , 0.        , 0.        , 0.16666667,
        0.        , 0.        , 0.09622504],
       [0.11111111, 0.        , 0.        , 0.        , 0.        ,
        0.11111111, 0.        , 0.        ],
       [0.        , 0.11111111, 0.        , 0.        , 0.        ,
        0.        , 0.11111111, 0.        ],
       [0.        , 0.        , 0.11111111, 0.        , 0.09622504,
        0.        , 0.        , 0.16666667]])

References

[1] (1,2,3,4)

Pawel Horodecki. Separability criterion and inseparable mixed states with positive partial transposition. Physics Letters A, 232(5):333–339, Aug 1997. URL: http://dx.doi.org/10.1016/S0375-9601(97)00416-7, doi:10.1016/s0375-9601(97)00416-7.

[2] (1,2,3)

Dariusz Chruściński and Andrzej Kossakowski. On the symmetry of the seminal horodecki state. Physics Letters A, 375(3):434–436, Jan 2011. URL: http://dx.doi.org/10.1016/j.physleta.2010.11.069, doi:10.1016/j.physleta.2010.11.069.

Parameters:
  • a_param (float)

  • dim (list[int])

Return type:

numpy.ndarray