matrix_props.is_unitary¶
Checks if the matrix is a unitary matrix.
Functions¶
|
Check if matrix is unitary [1]. |
Module Contents¶
- matrix_props.is_unitary.is_unitary(mat, rtol=1e-05, atol=1e-08)¶
Check if matrix is unitary [1].
A matrix is unitary if its inverse is equal to its conjugate transpose.
Alternatively, a complex square matrix \(U\) is unitary if its conjugate transpose \(U^*\) is also its inverse, that is, if
\[\begin{equation} U^* U = U U^* = \mathbb{I}, \end{equation}\]where \(\mathbb{I}\) is the identity matrix.
Examples
Consider the following matrix
\[\begin{split}X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}\end{split}\]our function indicates that this is indeed a unitary matrix.
>>> from toqito.matrix_props import is_unitary >>> import numpy as np >>> A = np.array([[0, 1], [1, 0]]) >>> is_unitary(A) True
We may also use the random_unitary function from toqito, and can verify that a randomly generated matrix is unitary
>>> from toqito.matrix_props import is_unitary >>> from toqito.rand import random_unitary >>> mat = random_unitary(2) >>> is_unitary(mat) True
Alternatively, the following example matrix \(B\) defined as
\[\begin{split}B = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}\end{split}\]is not unitary.
>>> from toqito.matrix_props import is_unitary >>> import numpy as np >>> B = np.array([[1, 0], [1, 1]]) >>> is_unitary(B) False
References
- Parameters:
mat (numpy.ndarray) – Matrix to check.
rtol (float) – The relative tolerance parameter (default 1e-05).
atol (float) – The absolute tolerance parameter (default 1e-08).
- Returns:
Return
True
if matrix is unitary, andFalse
otherwise.- Return type:
bool