matrices.gell_mann¶
Generates the Gell-Mann operator matrices.
Functions¶
Module Contents¶
- matrices.gell_mann.gell_mann(ind, is_sparse=False)¶
Produce a Gell-Mann operator [1].
Generates the 3-by-3 Gell-Mann matrix indicated by the value of
ind
. Whenind = 0
gives the identity matrix, while values 1 through 8 each indicate one of the other 8 Gell-Mann matrices.The 9 Gell-Mann matrices are defined as follows:
\[\begin{split}\begin{equation} \begin{aligned} \lambda_0 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad \lambda_1 = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad & \lambda_2 = \begin{pmatrix} 0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \\ \lambda_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad \lambda_4 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \quad & \lambda_5 = \begin{pmatrix} 0 & 0 & -i \\ 0 & 0 & 0 \\ i & 0 & 0 \end{pmatrix}, \\ \lambda_6 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, \quad \lambda_7 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -i \\ 0 & i & 0 \end{pmatrix}, \quad & \lambda_8 = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{pmatrix}. \end{aligned} \end{equation}\end{split}\]Examples
The Gell-Mann matrix generated from
idx = 2
yields the following matrix:\[\begin{split}\lambda_2 = \begin{pmatrix} 0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}\end{split}\]>>> from toqito.matrices import gell_mann >>> gell_mann(2) array([[ 0.+0.j, -0.-1.j, 0.+0.j], [ 0.+1.j, 0.+0.j, 0.+0.j], [ 0.+0.j, 0.+0.j, 0.+0.j]])
References
- Raises:
ValueError – Indices must be integers between 0 and 8.
- Parameters:
ind (int) – An integer between 0 and 8 (inclusive).
is_sparse (bool) – Boolean to determine whether array is sparse. Default value is
False
.
- Return type:
numpy.ndarray | scipy.sparse.csr_array