state_props.negativity¶
Calculates the negativity property of a quantum state.
Functions¶
|
Compute the negativity of a bipartite quantum state [1]. |
Module Contents¶
- state_props.negativity.negativity(rho, dim=None)¶
Compute the negativity of a bipartite quantum state [1].
The negativity of a subsystem can be defined in terms of a density matrix \(\rho\):
\[\mathcal{N}(\rho) \equiv \frac{||\rho^{\Gamma_A}||_1-1}{2}.\]Calculate the negativity of the quantum state \(\rho\), assuming that the two subsystems on which \(\rho\) acts are of equal dimension (if the local dimensions are unequal, specify them in the optional
dim
argument). The negativity of \(\rho\) is the sum of the absolute value of the negative eigenvalues of the partial transpose of \(\rho\).Examples
Example of the negativity of density matrix of Bell state.
>>> from toqito.states import bell >>> from toqito.state_props import negativity >>> rho = bell(0) @ bell(0).conj().T >>> negativity(rho) np.float64(0.4999999999999998)
See also
log_negativity
References
- Raises:
ValueError – If dimension of matrix is invalid.
- Parameters:
rho (numpy.ndarray) – A density matrix of a pure state vector.
dim (list[int] | int) – The default has both subsystems of equal dimension.
- Returns:
A value between 0 and 1 that corresponds to the negativity of \(\rho\).
- Return type:
float