matrix_props.is_hermitian¶
Checks if the matrix is a Hermitian matrix.
Functions¶
|
Check if matrix is Hermitian [1]. |
Module Contents¶
- matrix_props.is_hermitian.is_hermitian(mat, rtol=1e-05, atol=1e-08)¶
Check if matrix is Hermitian [1].
A Hermitian matrix is a complex square matrix that is equal to its own conjugate transpose.
Examples
Consider the following matrix:
\[\begin{split}A = \begin{pmatrix} 2 & 2 +1j & 4 \\ 2 - 1j & 3 & 1j \\ 4 & -1j & 1 \end{pmatrix}\end{split}\]our function indicates that this is indeed a Hermitian matrix as it holds that
\[A = A^*.\]>>> from toqito.matrix_props import is_hermitian >>> import numpy as np >>> mat = np.array([[2, 2 + 1j, 4], [2 - 1j, 3, 1j], [4, -1j, 1]]) >>> is_hermitian(mat) True
Alternatively, the following example matrix \(B\) defined as
\[\begin{split}B = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}\end{split}\]is not Hermitian.
>>> from toqito.matrix_props import is_hermitian >>> import numpy as np >>> mat = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) >>> is_hermitian(mat) False
References
- Parameters:
mat (numpy.ndarray) – Matrix to check.
rtol (float) – The relative tolerance parameter (default 1e-05).
atol (float) – The absolute tolerance parameter (default 1e-08).
- Returns:
Return True if matrix is Hermitian, and False otherwise.
- Return type:
bool