channels.depolarizing¶
Generates the depolarizing channel.
Functions¶
|
Produce the partially depolarizing channel. |
Module Contents¶
- channels.depolarizing.depolarizing(dim, param_p=0)¶
Produce the partially depolarizing channel.
(Section: Replacement Channels and the Completely Depolarizing Channel from [1]).
The Choi matrix of the completely depolarizing channel [2] that acts on
dim
-by-dim
matrices.The completely depolarizing channel is defined as
\[\Omega(X) = \text{Tr}(X) \omega\]for all \(X \in \text{L}(\mathcal{X})\), where
\[\omega = \frac{\mathbb{I}_{\mathcal{X}}}{\text{dim}(\mathcal{X})}\]denotes the completely mixed stated defined with respect to the space \(\mathcal{X}\).
Examples
The completely depolarizing channel maps every density matrix to the maximally-mixed state. For example, consider the density operator
\[\begin{split}\rho = \frac{1}{2} \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 \end{pmatrix}\end{split}\]corresponding to one of the Bell states. Applying the depolarizing channel to \(\rho\) we have that
\[\begin{split}\Phi(\rho) = \frac{1}{4} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}.\end{split}\]This can be observed in
toqito
as follows.>>> from toqito.channel_ops import apply_channel >>> from toqito.channels import depolarizing >>> import numpy as np >>> test_input_mat = np.array([[1 / 2, 0, 0, 1 / 2], [0, 0, 0, 0], [0, 0, 0, 0], [1 / 2, 0, 0, 1 / 2]]) >>> apply_channel(test_input_mat, depolarizing(4)) array([[0.25, 0. , 0. , 0. ], [0. , 0.25, 0. , 0. ], [0. , 0. , 0.25, 0. ], [0. , 0. , 0. , 0.25]])
>>> from toqito.channel_ops import apply_channel >>> from toqito.channels import depolarizing >>> import numpy as np >>> test_input_mat = np.array( ... [[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]] ... ) >>> apply_channel(test_input_mat, depolarizing(4, 0.5)) array([[ 4.75, 1. , 1.5 , 2. ], [ 2.5 , 7.25, 3.5 , 4. ], [ 4.5 , 5. , 9.75, 6. ], [ 6.5 , 7. , 7.5 , 12.25]])
References
[1]John Watrous. The Theory of Quantum Information. Cambridge University Press, 2018. URL: https://johnwatrous.com/wp-content/uploads/TQI.pdf, doi:10.1017/9781316848142.
[2]Wikipedia. Quantum depolarizing channel. URL: https://en.wikipedia.org/wiki/Quantum_depolarizing_channel.
- Parameters:
dim (int) – The dimensionality on which the channel acts.
param_p (float) – Default 0.
- Returns:
The Choi matrix of the completely depolarizing channel.
- Return type:
numpy.ndarray