state_props.is_distinguishable¶
Checks if a set of quantum states are distinguishable.
Functions¶
|
Check whether a collection of vectors are (perfectly) distinguishable or not. |
Module Contents¶
- state_props.is_distinguishable.is_distinguishable(states, probs=None)¶
Check whether a collection of vectors are (perfectly) distinguishable or not.
The ability to determine whether a set of quantum states are distinguishable can be obtained via the state distinguishability SDP as defined in state_distinguishability
Examples
The set of Bell states are an example of distinguishable states. Recall that the Bell states are defined as:
\[\begin{split}u_1 = \frac{1}{\sqrt{2}} \left(|00\rangle + |11\rangle\right), &\quad u_2 = \frac{1}{\sqrt{2}} \left(|00\rangle - |11\rangle\right), \\ u_3 = \frac{1}{\sqrt{2}} \left(|01\rangle + |10\rangle\right), &\quad u_4 = \frac{1}{\sqrt{2}} \left(|01\rangle - |10\rangle\right).\end{split}\]It can be checked in :code`toqito` that the Bell states are distinguishable:
>>> from toqito.states import bell >>> from toqito.state_props import is_distinguishable >>> >>> bell_states = [bell(0), bell(1), bell(2), bell(3)] >>> is_distinguishable(bell_states) np.True_
References
- Parameters:
states (list[numpy.ndarray]) – A set of vectors consisting of quantum states to determine the distinguishability of.
probs (list[float]) – Respective list of probabilities each state is selected. If no probabilities are provided, a uniform probability distribution is assumed.
- Returns:
True
if the vectors are distinguishable;False
otherwise.- Return type:
bool