matrix_props.is_positive_semidefinite¶
Checks if the matrix is a positive semidefinite matrix.
Functions¶
|
Check if matrix is positive semidefinite (PSD) [1]. |
Module Contents¶
- matrix_props.is_positive_semidefinite.is_positive_semidefinite(mat, rtol=1e-05, atol=1e-08)¶
Check if matrix is positive semidefinite (PSD) [1].
Examples
Consider the following matrix
\[\begin{split}A = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}\end{split}\]our function indicates that this is indeed a positive semidefinite matrix.
>>> from toqito.matrix_props import is_positive_semidefinite >>> import numpy as np >>> A = np.array([[1, -1], [-1, 1]]) >>> is_positive_semidefinite(A) True
Alternatively, the following example matrix \(B\) defined as
\[\begin{split}B = \begin{pmatrix} -1 & -1 \\ -1 & -1 \end{pmatrix}\end{split}\]is not positive semidefinite.
>>> from toqito.matrix_props import is_positive_semidefinite >>> import numpy as np >>> B = np.array([[-1, -1], [-1, -1]]) >>> is_positive_semidefinite(B) False
References
- Parameters:
mat (numpy.ndarray) – Matrix to check.
rtol (float) – The relative tolerance parameter (default 1e-05).
atol (float) – The absolute tolerance parameter (default 1e-08).
- Returns:
Return
True
if matrix is PSD, andFalse
otherwise.- Return type:
bool