states.isotropic¶
Isotropic state is a bipartite quantum state.
These states are separable for α ≤ 1/(d+1), but are otherwise entangled.
Functions¶
Module Contents¶
- states.isotropic.isotropic(dim, alpha)¶
Produce a isotropic state [1].
Returns the isotropic state with parameter
alpha
acting on (dim
-by-dim
)-dimensional space. The isotropic state has the following form\[\begin{equation} \rho_{\alpha} = \frac{1 - \alpha}{d^2} \mathbb{I} \otimes \mathbb{I} + \alpha |\psi_+ \rangle \langle \psi_+ | \in \mathbb{C}^d \otimes \mathbb{C}^2 \end{equation}\]where \(|\psi_+ \rangle = \frac{1}{\sqrt{d}} \sum_j |j \rangle \otimes |j \rangle\) is the maximally entangled state.
Examples
To generate the isotropic state with parameter \(\alpha=1/2\), we can make the following call to
toqito
as>>> from toqito.states import isotropic >>> isotropic(3, 1 / 2) array([[0.22222222, 0. , 0. , 0. , 0.16666667, 0. , 0. , 0. , 0.16666667], [0. , 0.05555556, 0. , 0. , 0. , 0. , 0. , 0. , 0. ], [0. , 0. , 0.05555556, 0. , 0. , 0. , 0. , 0. , 0. ], [0. , 0. , 0. , 0.05555556, 0. , 0. , 0. , 0. , 0. ], [0.16666667, 0. , 0. , 0. , 0.22222222, 0. , 0. , 0. , 0.16666667], [0. , 0. , 0. , 0. , 0. , 0.05555556, 0. , 0. , 0. ], [0. , 0. , 0. , 0. , 0. , 0. , 0.05555556, 0. , 0. ], [0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.05555556, 0. ], [0.16666667, 0. , 0. , 0. , 0.16666667, 0. , 0. , 0. , 0.22222222]])
References
[1] (1,2)Michal Horodecki and Pawel Horodecki. Reduction criterion of separability and limits for a class of protocols of entanglement distillation. 1998. arXiv:quant-ph/9708015.
- Parameters:
dim (int) – The local dimension.
alpha (float) – The parameter of the isotropic state.
- Returns:
Isotropic state of dimension
dim
.- Return type:
numpy.ndarray