matrices.gen_pauli_z¶
Produces a generalized Pauli-Z operator matrix.
Functions¶
|
Produce gen_pauli_z matrix [1]. |
Module Contents¶
- matrices.gen_pauli_z.gen_pauli_z(dim)¶
Produce gen_pauli_z matrix [1].
Returns the gen_pauli_z matrix of dimension
dim
described in [1]. The gen_pauli_z matrix generates the followingdim
-by-dim
matrix\[\begin{split}\Sigma_{1, d} = \begin{pmatrix} 1 & 0 & 0 & \ldots & 0 \\ 0 & \omega & 0 & \ldots & 0 \\ 0 & 0 & \omega^2 & \ldots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \ldots & \omega^{d-1} \end{pmatrix}\end{split}\]where \(\omega\) is the n-th primitive root of unity.
The gen_pauli_z matrix is primarily used in the construction of the generalized Pauli operators.
Examples
The gen_pauli_z matrix generated from \(d = 3\) yields the following matrix:
\[\begin{split}\Sigma_{1, 3} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \omega & 0 \\ 0 & 0 & \omega^2 \end{pmatrix}\end{split}\]>>> from toqito.matrices import gen_pauli_z >>> gen_pauli_z(3) array([[ 1. +0.j , 0. +0.j , 0. +0.j ], [ 0. +0.j , -0.5+0.8660254j, 0. +0.j ], [ 0. +0.j , 0. +0.j , -0.5-0.8660254j]])
References
[1] (1,2,3)Wikipedia. Generalizations of pauli matrices. URL: https://en.wikipedia.org/wiki/Generalizations_of_Pauli_matrices.
- Parameters:
dim (int) – Dimension of the matrix.
- Returns:
dim
-by-dim
gen_pauli_z matrix.- Return type:
numpy.ndarray