matrices.standard_basis¶
Constructs the standard basis.
Functions¶
|
Create standard basis of dimension |
Module Contents¶
- matrices.standard_basis.standard_basis(dim, flatten=False)¶
Create standard basis of dimension
dim
.Create a list containing the elements of the standard basis for the given dimension:
\[|1> = (1, 0, 0, ..., 0)^T |2> = (0, 1, 0, ..., 0)^T . . . |n> = (0, 0, 0, ..., 1)^T\]This function was inspired by [1, 2, 3]
Examples
>>> from toqito.matrices import standard_basis >>> standard_basis(2) [array([[1.], [0.]]), array([[0.], [1.]])]
References
[1]Akshay Seshadri. Minimax fidelity estimation. URL: https://github.com/akshayseshadri/minimax-fidelity-estimation.
[2]Akshay Seshadri, Martin Ringbauer, Thomas Monz, and Stephen Becker. Theory of versatile fidelity estimation with confidence. 2021. arXiv:2112.07947.
[3]Akshay Seshadri, Martin Ringbauer, Rainer Blatt, Thomas Monz, and Stephen Becker. Versatile fidelity estimation with confidence. 2021. arXiv:2112.07925.
- Parameters:
dim (int) – The dimension of the basis.
flatten (bool) – If True, the basis is returned as a flattened list.
- Returns:
A list of numpy.ndarray of shape (n, 1).
- Return type:
list[numpy.ndarray]