matrices.fourier¶
Generates a Fourier matrix.
Functions¶
Module Contents¶
- matrices.fourier.fourier(dim)¶
Generate the Fourier transform matrix [1].
Generates the
dim
-by-dim
unitary matrix that implements the quantum Fourier transform.The Fourier matrix is defined as:
\[\begin{split}W_N = \frac{1}{N} \begin{pmatrix} 1 & 1 & 1 & 1 & \ldots & 1 \\ 1 & \omega & \omega^2 & \omega^3 & \ldots & \omega^{N-1} \\ 1 & \omega^2 & \omega^4 & \omega^6 & \ldots & \omega^{2(N-1)} \\ 1 & \omega^3 & \omega^6 & \omega^9 & \ldots & \omega^{3(N-1)} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \omega^{N-1} & \omega^{2(N-1)} & \omega^{3(N-1)} & \ldots & \omega^{3(N-1)} \end{pmatrix}\end{split}\]Examples
The Fourier matrix generated from \(d = 3\) yields the following matrix:
\[\begin{split}W_3 = \frac{1}{3} \begin{pmatrix} 1 & 1 & 1 \\ 0 & \omega & \omega^2 \\ 1 & \omega^2 & \omega^4 \end{pmatrix}\end{split}\]>>> from toqito.matrices import fourier >>> fourier(3) array([[ 0.57735027+0.j , 0.57735027+0.j , 0.57735027+0.j ], [ 0.57735027+0.j , -0.28867513+0.5j, -0.28867513-0.5j], [ 0.57735027+0.j , -0.28867513-0.5j, -0.28867513+0.5j]])
References
- Parameters:
dim (int) – The size of the Fourier matrix.
- Returns:
The Fourier matrix of dimension
dim
.- Return type:
numpy.ndarray