state_metrics.helstrom_holevo¶
Helstrom-Holevo metric gives the bst success probability to distinguish two mixed states.
Functions¶
|
Compute the Helstrom-Holevo distance between density matrices [1]. |
Module Contents¶
- state_metrics.helstrom_holevo.helstrom_holevo(rho, sigma)¶
Compute the Helstrom-Holevo distance between density matrices [1].
In general, the best success probability to discriminate two mixed states represented by \(\rho\) and \(\sigma\) is given by [1].
\[\frac{1}{2}+\frac{1}{2} \left(\frac{1}{2} \left|\rho - \sigma \right|_1\right).\]Examples
Consider the following Bell state
\[u = \frac{1}{\sqrt{2}} \left( |00 \rangle + |11 \rangle \right) \in \mathcal{X}.\]The corresponding density matrix of \(u\) may be calculated by:
\[\begin{split}\rho = u u^* = \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 \end{pmatrix} \in \text{D}(\mathcal{X}).\end{split}\]Calculating the Helstrom-Holevo distance of states that are identical yield a value of \(1/2\). This can be verified in
toqito
as follows.>>> from toqito.states import basis >>> from toqito.state_metrics import helstrom_holevo >>> import numpy as np >>> e_0, e_1 = basis(2, 0), basis(2, 1) >>> e_00 = np.kron(e_0, e_0) >>> e_11 = np.kron(e_1, e_1) >>> >>> u_vec = 1 / np.sqrt(2) * (e_00 + e_11) >>> rho = u_vec @ u_vec.conj().T >>> sigma = rho >>> >>> helstrom_holevo(rho, sigma) np.float64(0.5)
References
- Raises:
ValueError – If matrices are not density operators.
- Parameters:
rho (numpy.ndarray) – Density operator.
sigma (numpy.ndarray) – Density operator.
- Returns:
The Helstrom-Holevo distance between
rho
andsigma
.- Return type:
float