perms.symmetric_projection¶
Symmetric projection operator produces a projection onto a symmetric subspace.
Functions¶
|
Produce the projection onto the symmetric subspace [1]. |
Module Contents¶
- perms.symmetric_projection.symmetric_projection(dim, p_val=2, partial=False)¶
Produce the projection onto the symmetric subspace [1].
For a complex Euclidean space \(\mathcal{X}\) and a positive integer \(n\), the projection onto the symmetric subspace is given by
\[\frac{1}{n!} \sum_{\pi \in S_n} W_{\pi}\]where \(W_{\pi}\) is the swap operator and where \(S_n\) is the symmetric group on \(n\) symbols.
Produces the orthogonal projection onto the symmetric subspace of
p_val
copies of dim-dimensional space. If partial = True, then the symmetric projection (PS) isn’t the orthogonal projection itself, but rather a matrix whose columns form an orthonormal basis for the symmetric subspace (and hence the PS * PS’ is the orthogonal projection onto the symmetric subspace).This function was adapted from the QETLAB package.
Examples
The \(2\)-dimensional symmetric projection with \(p=1\) is given as \(2\)-by-\(2\) identity matrix
\[\begin{split}\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.\end{split}\]Using
toqito
, we can see this gives the proper result.>>> from toqito.perms import symmetric_projection >>> symmetric_projection(2, 1) array([[1., 0.], [0., 1.]])
When \(d = 2\) and \(p = 2\) we have that
\[\begin{split}\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1/2 & 1/2 & 0 \\ 0 & 1/2 & 1/2 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}.\end{split}\]Using
toqito
we can see this gives the proper result.>>> from toqito.perms import symmetric_projection >>> symmetric_projection(dim=2) array([[1. , 0. , 0. , 0. ], [0. , 0.5, 0.5, 0. ], [0. , 0.5, 0.5, 0. ], [0. , 0. , 0. , 1. ]])
References
[1] (1,2)Jianxin Chen, Zhengfeng Ji, David Kribs, Norbert Lütkenhaus, and Bei Zeng. Symmetric extension of two-qubit states. Physical Review A, Sep 2014. URL: http://dx.doi.org/10.1103/PhysRevA.90.032318, doi:10.1103/physreva.90.032318.
- Parameters:
dim (int) – The dimension of the local systems.
p_val (int) – Default value of 2.
partial (bool) – Default value of 0.
- Returns:
Projection onto the symmetric subspace.
- Return type:
numpy.ndarray