matrices.gen_gell_mann¶
Produces the generalized Gell-Mann operator matrices.
Functions¶
|
Produce a generalized Gell-Mann operator [1]. |
Module Contents¶
- matrices.gen_gell_mann.gen_gell_mann(ind_1, ind_2, dim)¶
Produce a generalized Gell-Mann operator [1].
Construct a
dim
-by-dim
Hermitian operator. These matrices span the entire space ofdim
-by-dim
matrices asind_1
andind_2
range from 0 todim-1
, inclusive, and they generalize the Pauli operators whendim = 2
and the Gell-Mann operators whendim = 3
.Examples
The generalized Gell-Mann matrix for
ind_1 = 0
,ind_2 = 1
anddim = 2
is given as\[\begin{split}G_{0, 1, 2} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.\end{split}\]This can be obtained in
toqito
as follows.>>> from toqito.matrices import gen_gell_mann >>> gen_gell_mann(0, 1, 2) array([[0., 1.], [1., 0.]])
The generalized Gell-Mann matrix
ind_1 = 2
,ind_2 = 3
, anddim = 4
is given as\[\begin{split}G_{2, 3, 4} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}.\end{split}\]This can be obtained in
toqito
as follows.>>> from toqito.matrices import gen_gell_mann >>> gen_gell_mann(2, 3, 4) array([[0., 0., 0., 0.], [0., 0., 0., 0.], [0., 0., 0., 1.], [0., 0., 1., 0.]])
References
- Parameters:
ind_1 (int) – A non-negative integer from 0 to
dim-1
(inclusive).ind_2 (int) – A non-negative integer from 0 to
dim-1
(inclusive).dim (int) – The dimension of the Gell-Mann operator.
- Returns:
The generalized Gell-Mann operator as an array.
- Return type:
numpy.ndarray