matrix_props.is_permutation¶
Checks if the matrix is a permutation matrix.
Functions¶
|
Determine if a matrix is a permutation matrix [1]. |
Module Contents¶
- matrix_props.is_permutation.is_permutation(mat)¶
Determine if a matrix is a permutation matrix [1].
A matrix is a permutation matrix if each row and column has a single element of 1 and all others are 0.
Examples
Consider the following permutation matrix
\[\begin{split}A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}\end{split}\]which is indeed a permutation matrix.
>>> from toqito.matrix_props import is_permutation >>> import numpy as np >>> A = np.array([[1, 0, 0], [0, 0, 1], [0, 1, 0]]) >>> is_permutation(A) True
Alternatively, the following example matrix \(B\) defined as
\[\begin{split}B = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}\end{split}\]has 2 columns with all zero values and is thus not a permutation matrix.
>>> from toqito.matrix_props import is_permutation >>> import numpy as np >>> B = np.array([[1, 0, 0], [1, 0, 0], [1, 0, 0]]) >>> is_permutation(B) False
References
- Parameters:
mat (numpy.ndarray) – The matrix to check.
- Returns:
Returns
True
if the matrix is a permutation matrix andFalse
otherwise.- Return type:
bool