states.tile¶
Tile state.
Functions¶
Module Contents¶
- states.tile.tile(idx)¶
Produce a Tile state [1].
The Tile states constitute five states on 3-by-3 dimensional space that form a UPB (unextendible product basis).
Returns one of the following five tile states depending on the value of
idx
:\[\begin{split}\begin{equation} \begin{aligned} |\psi_0 \rangle = \frac{1}{\sqrt{2}} |0 \rangle \left(|0\rangle - |1\rangle \right), \qquad & |\psi_1\rangle = \frac{1}{\sqrt{2}} \left(|0\rangle - |1\rangle \right) |2\rangle, \\ |\psi_2\rangle = \frac{1}{\sqrt{2}} |2\rangle \left(|1\rangle - |2\rangle \right), \qquad & |\psi_3\rangle = \frac{1}{\sqrt{2}} \left(|1\rangle - |2\rangle \right) |0\rangle, \\ \qquad & |\psi_4\rangle = \frac{1}{3} \left(|0\rangle + |1\rangle + |2\rangle)\right) \left(|0\rangle + |1\rangle + |2\rangle \right). \end{aligned} \end{equation}\end{split}\]Examples
When
idx = 0
, this produces the following tile state\[\frac{1}{\sqrt{2}} |0\rangle \left( |0\rangle - |1\rangle \right).\]Using
toqito
, we can see that this yields the proper state.>>> from toqito.states import tile >>> import numpy as np >>> tile(0) array([[ 0.70710678], [-0.70710678], [ 0. ], [ 0. ], [ 0. ], [ 0. ], [ 0. ], [ 0. ], [ 0. ]])
References
[1] (1,2)Charles H. Bennett, David P. DiVincenzo, Tal Mor, Peter W. Shor, John A. Smolin, and Barbara M. Terhal. Unextendible product bases and bound entanglement. Physical Review Letters, 82(26):5385–5388, Jun 1999. URL: http://dx.doi.org/10.1103/PhysRevLett.82.5385, doi:10.1103/physrevlett.82.5385.
- Raises:
ValueError – Invalid value for
idx
.- Parameters:
idx (int) – A parameter in [0, 1, 2, 3, 4]
- Returns:
Tile state.
- Return type:
numpy.ndarray