states.tile

Tile state.

Functions

tile(idx)

Produce a Tile state [1].

Module Contents

states.tile.tile(idx)

Produce a Tile state [1].

The Tile states constitute five states on 3-by-3 dimensional space that form a UPB (unextendible product basis).

Returns one of the following five tile states depending on the value of idx:

\[\begin{split}\begin{equation} \begin{aligned} |\psi_0 \rangle = \frac{1}{\sqrt{2}} |0 \rangle \left(|0\rangle - |1\rangle \right), \qquad & |\psi_1\rangle = \frac{1}{\sqrt{2}} \left(|0\rangle - |1\rangle \right) |2\rangle, \\ |\psi_2\rangle = \frac{1}{\sqrt{2}} |2\rangle \left(|1\rangle - |2\rangle \right), \qquad & |\psi_3\rangle = \frac{1}{\sqrt{2}} \left(|1\rangle - |2\rangle \right) |0\rangle, \\ \qquad & |\psi_4\rangle = \frac{1}{3} \left(|0\rangle + |1\rangle + |2\rangle)\right) \left(|0\rangle + |1\rangle + |2\rangle \right). \end{aligned} \end{equation}\end{split}\]

Examples

When idx = 0, this produces the following tile state

\[\frac{1}{\sqrt{2}} |0\rangle \left( |0\rangle - |1\rangle \right).\]

Using toqito, we can see that this yields the proper state.

>>> from toqito.states import tile
>>> import numpy as np
>>> tile(0)
array([[ 0.70710678],
       [-0.70710678],
       [ 0.        ],
       [ 0.        ],
       [ 0.        ],
       [ 0.        ],
       [ 0.        ],
       [ 0.        ],
       [ 0.        ]])

References

[1] (1,2)

Charles H. Bennett, David P. DiVincenzo, Tal Mor, Peter W. Shor, John A. Smolin, and Barbara M. Terhal. Unextendible product bases and bound entanglement. Physical Review Letters, 82(26):5385–5388, Jun 1999. URL: http://dx.doi.org/10.1103/PhysRevLett.82.5385, doi:10.1103/physrevlett.82.5385.

Raises:

ValueError – Invalid value for idx.

Parameters:

idx (int) – A parameter in [0, 1, 2, 3, 4]

Returns:

Tile state.

Return type:

numpy.ndarray