perms.antisymmetric_projection¶
Antisymmetric projection operator produces an orthogonal projection onto an anti-symmetric subspace.
Functions¶
|
Produce the projection onto the antisymmetric subspace [1]. |
Module Contents¶
- perms.antisymmetric_projection.antisymmetric_projection(dim, p_param=2, partial=False)¶
Produce the projection onto the antisymmetric subspace [1].
Produces the orthogonal projection onto the anti-symmetric subspace of
p_param
copies ofdim
-dimensional space. Ifpartial = True
, then the antisymmetric projection (PA) isn’t the orthogonal projection itself, but rather a matrix whose columns form an orthonormal basis for the symmetric subspace (and hence the PA * PA’ is the orthogonal projection onto the symmetric subspace.)Examples
The \(2\)-dimensional antisymmetric projection with \(p=1\) is given as \(2\)-by-\(2\) identity matrix
\[\begin{split}A_{2,1} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.\end{split}\]Using
toqito
, we can see this gives the proper result.>>> from toqito.perms import antisymmetric_projection >>> antisymmetric_projection(2, 1) array([[1., 0.], [0., 1.]])
When the \(p\) value is greater than the dimension of the antisymmetric projection, this just gives the matrix consisting of all zero entries. For instance, when \(d = 2\) and \(p = 3\) we have that
\[\begin{split}A_{2, 3} = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}.\end{split}\]Using
toqito
we can see this gives the proper result.>>> from toqito.perms import antisymmetric_projection >>> antisymmetric_projection(2, 3) array([[0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0.]])
References
[1] (1,2)Wikipedia. Anti-symmetric operator. URL: https://en.wikipedia.org/wiki/Anti-symmetric_operator.
- Parameters:
dim (int) – The dimension of the local systems.
p_param (int) – Default value of 2.
partial (bool) – Default value of 0.
- Returns:
Projection onto the antisymmetric subspace.
- Return type:
numpy.ndarray