channel_props.is_completely_positive¶
Determines if a channel is completely positive.
Functions¶
|
Determine whether the given channel is completely positive. |
Module Contents¶
- channel_props.is_completely_positive.is_completely_positive(phi, rtol=1e-05, atol=1e-08)¶
Determine whether the given channel is completely positive.
(Section: Linear Maps Of Square Operators from [1]).
A map \(\Phi \in \text{T} \left(\mathcal{X}, \mathcal{Y} \right)\) is completely positive if it holds that
\[\Phi \otimes \mathbb{I}_{\text{L}(\mathcal{Z})}\]is a positive map for every complex Euclidean space \(\mathcal{Z}\).
Alternatively, a channel is completely positive if the corresponding Choi matrix of the channel is both Hermitian-preserving and positive semidefinite.
Examples
We can specify the input as a list of Kraus operators. Consider the map \(\Phi\) defined as
\[\Phi(X) = X - U X U^*\]where
\[\begin{split}U = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}.\end{split}\]This map is not completely positive, as we can verify as follows.
>>> from toqito.channel_props import is_completely_positive >>> import numpy as np >>> unitary_mat = np.array([[1, 1], [-1, 1]]) / np.sqrt(2) >>> kraus_ops = [[np.identity(2), np.identity(2)], [unitary_mat, -unitary_mat]] >>> is_completely_positive(kraus_ops) False
We can also specify the input as a Choi matrix. For instance, consider the Choi matrix corresponding to the \(2\)-dimensional completely depolarizing channel
\[\begin{split}\Omega = \frac{1}{2} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}.\end{split}\]We may verify that this channel is completely positive
>>> from toqito.channels import depolarizing >>> from toqito.channel_props import is_completely_positive >>> is_completely_positive(depolarizing(2)) True
References
[1]John Watrous. The Theory of Quantum Information. Cambridge University Press, 2018. URL: https://johnwatrous.com/wp-content/uploads/TQI.pdf, doi:10.1017/9781316848142.
- Parameters:
phi (numpy.ndarray | list[list[numpy.ndarray]]) – The channel provided as either a Choi matrix or a list of Kraus operators.
rtol (float) – The relative tolerance parameter (default 1e-05).
atol (float) – The absolute tolerance parameter (default 1e-08).
- Returns:
True if the channel is completely positive, and False otherwise.
- Return type:
bool