matrix_props.is_idempotent¶
Checks if the matrix is an idempotent matrix.
Functions¶
|
Check if matrix is the idempotent matrix [1]. |
Module Contents¶
- matrix_props.is_idempotent.is_idempotent(mat, rtol=1e-05, atol=1e-08)¶
Check if matrix is the idempotent matrix [1].
An idempotent matrix is a square matrix, which, when multiplied by itself, yields itself. That is, the matrix \(A\) is idempotent if and only if \(A^2 = A\).
Examples
The following is an example of a \(2 x 2\) idempotent matrix:
\[\begin{split}A = \begin{pmatrix} 3 & -6 \\ 1 & -2 \end{pmatrix}\end{split}\]>>> from toqito.matrix_props import is_idempotent >>> import numpy as np >>> mat = np.array([[3, -6], [1, -2]]) >>> is_idempotent(mat) True
Alternatively, the following matrix
\[\begin{split}B = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}\end{split}\]is not idempotent.
>>> from toqito.matrix_props import is_idempotent >>> import numpy as np >>> mat = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) >>> is_idempotent(mat) False
References
- Parameters:
mat (numpy.ndarray) – Matrix to check.
rtol (float) – The relative tolerance parameter (default 1e-05).
atol (float) – The absolute tolerance parameter (default 1e-08).
- Returns:
Return
True
if matrix is the idempotent matrix, andFalse
otherwise.- Return type:
bool