rand.random_povm¶
Generates a random POVM.
Functions¶
|
Generate random positive operator valued measurements (POVMs) [1]. |
Module Contents¶
- rand.random_povm.random_povm(dim, num_inputs, num_outputs, seed=None)¶
Generate random positive operator valued measurements (POVMs) [1].
Examples
We can generate a set of dim-by-dim POVMs consisting of a specific dimension along with a given number of measurement inputs and measurement outputs. As an example, we can construct a random set of \(2\)-by-\(2\) POVMs of dimension with \(2\) inputs and \(2\) outputs.
>>> from toqito.rand import random_povm >>> import numpy as np >>> >>> dim, num_inputs, num_outputs = 2, 2, 2 >>> povms = random_povm(dim, num_inputs, num_outputs) >>> povms array([[[[ 0.20649603+0.j, 0.79350397+0.j], [ 0.77451456+0.j, 0.22548544+0.j]], [[-0.25971638+0.j, 0.25971638+0.j], [-0.28048509+0.j, 0.28048509+0.j]]], [[[-0.25971638+0.j, 0.25971638+0.j], [-0.28048509+0.j, 0.28048509+0.j]], [[ 0.40448792+0.j, 0.59551208+0.j], [ 0.10740892+0.j, 0.89259108+0.j]]]])
We can verify that this constitutes a valid set of POVM elements as checking that these operators all sum to the identity operator.
>>> np.round(povms[:, :, 0, 0] + povms[:, :, 0, 1]) [[1.+0.j, 0.+0.j], [0.+0.j, 1.+0.j]]
It is also possible to add a seed for reproducibility.
>>> from toqito.rand import random_povm >>> import numpy as np >>> >>> dim, num_inputs, num_outputs = 2, 2, 2 >>> povms = random_povm(dim, num_inputs, num_outputs, seed=42) >>> povms array([[[[ 0.22988028+0.j, 0.77011972+0.j], [ 0.45021752+0.j, 0.54978248+0.j]], [[-0.23938341+0.j, 0.23938341+0.j], [ 0.32542956+0.j, -0.32542956+0.j]]], [[[-0.23938341+0.j, 0.23938341+0.j], [ 0.32542956+0.j, -0.32542956+0.j]], [[ 0.83184406+0.j, 0.16815594+0.j], [ 0.61323275+0.j, 0.38676725+0.j]]]])
We can once again verify that this constitutes a valid set of POVM elements as checking that these operators all sum to the identity operator.
>>> np.round(povms[:, :, 0, 0] + povms[:, :, 0, 1]) array([[ 1.+0.j, -0.+0.j], [-0.+0.j, 1.+0.j]])
References
- Parameters:
dim (int) – The dimensions of the measurements.
num_inputs (int) – The number of inputs for the measurement.
num_outputs (int) – The number of outputs for the measurement.
seed (int | None) – A seed used to instantiate numpy’s random number generator.
- Returns:
A set of dim-by-dim POVMs of shape (dim, dim, num_inputs, num_outputs).
- Return type:
numpy.ndarray