state_opt.ppt_distinguishability¶
Calculates the probability of PPT state distinguishability when done optimally.
Functions¶
|
Compute probability of optimally distinguishing a state via PPT measurements [3]. |
|
Primal problem for the SDP with PPT constraints. |
|
Semidefinite program with PPT constraints (dual problem). |
Module Contents¶
- state_opt.ppt_distinguishability.ppt_distinguishability(vectors, subsystems, dimensions, probs=None, strategy='min_error', solver='cvxopt', primal_dual='dual')¶
Compute probability of optimally distinguishing a state via PPT measurements [3].
Implements the semidefinite program (SDP) whose optimal value is equal to the maximum probability of perfectly distinguishing orthogonal maximally entangled states using any PPT measurement; a measurement whose operators are positive under partial transpose. This SDP was explicitly provided in [3].
One can specify the distinguishability method using the
dist_method
argument.For
dist_method = "min_error"
, this is the default method that yields the probability of distinguishing quantum states via PPT measurements that minimize the probability of error.For
dist_method = "unambig"
, Alice and Bob never provide an incorrect answer, although it is possible that their answer is inconclusive.For more info, go to the tutorial in the documentation Optimal probability of distinguishing a state via PPT measurements.
Examples
Consider the following Bell states:
\[\begin{split}\begin{equation} \begin{aligned} |\psi_0 \rangle = \frac{|00\rangle + |11\rangle}{\sqrt{2}}, &\quad |\psi_1 \rangle = \frac{|01\rangle + |10\rangle}{\sqrt{2}}, \\ |\psi_2 \rangle = \frac{|01\rangle - |10\rangle}{\sqrt{2}}, &\quad |\psi_3 \rangle = \frac{|00\rangle - |11\rangle}{\sqrt{2}}. \end{aligned} \end{equation}\end{split}\]It was illustrated in [5] that for the following set of states
\[\begin{split}\begin{equation} \begin{aligned} \rho_1^{(2)} &= |\psi_0 \rangle | \psi_0 \rangle \langle \psi_0 | \langle \psi_0 |, \quad \rho_2^{(2)} &= |\psi_1 \rangle | \psi_3 \rangle \langle \psi_1 | \langle \psi_3 |, \\ \rho_3^{(2)} &= |\psi_2 \rangle | \psi_3 \rangle \langle \psi_2 | \langle \psi_3 |, \quad \rho_4^{(2)} &= |\psi_3 \rangle | \psi_3 \rangle \langle \psi_3 | \langle \psi_3 |, \\ \end{aligned} \end{equation}\end{split}\]that the optimal probability of distinguishing via a PPT measurement should yield \(7/8 \approx 0.875\) as was proved in [5].
>>> import numpy as np >>> from toqito.states import bell >>> from toqito.state_opt import ppt_distinguishability >>> # Bell vectors: >>> psi_0 = bell(0) >>> psi_1 = bell(2) >>> psi_2 = bell(3) >>> psi_3 = bell(1) >>> >>> # YDY vectors from :cite:`Yu_2012_Four`. >>> x_1 = np.kron(psi_0, psi_0) >>> x_2 = np.kron(psi_1, psi_3) >>> x_3 = np.kron(psi_2, psi_3) >>> x_4 = np.kron(psi_3, psi_3) >>> >>> # YDY density matrices. >>> rho_1 = x_1 @ x_1.conj().T >>> rho_2 = x_2 @ x_2.conj().T >>> rho_3 = x_3 @ x_3.conj().T >>> rho_4 = x_4 @ x_4.conj().T >>> >>> states = [rho_1, rho_2, rho_3, rho_4] >>> probs = [1 / 4, 1 / 4, 1 / 4, 1 / 4] >>> >>> opt_val, _ = ppt_distinguishability(vectors=states, probs=probs, dimensions=[2, 2, 2, 2], subsystems=[0, 2]) >>> '%.3f' % opt_val '0.875'
References
[1] (1,2,3)Alessandro Cosentino. Positive-partial-transpose-indistinguishable states via semidefinite programming. Physical Review A, Jan 2013. URL: http://dx.doi.org/10.1103/PhysRevA.87.012321, doi:10.1103/physreva.87.012321.
[2] (1,2)Nengkun Yu, Runyao Duan, and Mingsheng Ying. Four locally indistinguishable ququad-ququad orthogonal maximally entangled states. Physical Review Letters, Jul 2012. URL: http://dx.doi.org/10.1103/PhysRevLett.109.020506, doi:10.1103/physrevlett.109.020506.
- Parameters:
vectors (list[numpy.ndarray]) – A list of states provided as either matrices or vectors.
probs (list[float]) – Respective list of probabilities each state is selected.
subsystems (list[int]) – A list of integers that correspond to the complex Euclidean space dimensions.
dimensions (list[int]) – A list of integers that correspond to the dimensions of the subsystems.
strategy (str) – The method of distinguishing states.
solver (str) – The SDP solver to use.
primal_dual (str) – Option for the optimization problem.
- Returns:
The optimal probability with which the states can be distinguished via PPT measurements.
- Return type:
float
- state_opt.ppt_distinguishability._min_error_primal(vectors, subsystems, dimensions, probs, solver='cvxopt', strategy='min_error')¶
Primal problem for the SDP with PPT constraints.
- Parameters:
vectors (list[numpy.ndarray])
subsystems (list[int])
dimensions (list[int])
probs (list[float])
solver (str)
strategy (str)
- state_opt.ppt_distinguishability._min_error_dual(vectors, subsystems, dimensions, probs, solver='cvxopt', strategy='min_error')¶
Semidefinite program with PPT constraints (dual problem).
- Parameters:
vectors (list[numpy.ndarray])
subsystems (list[int])
dimensions (list[int])
probs (list[float])
solver (str)
strategy (str)