matrix_props.majorizes¶
Determine if one vector or matrix majorizes another.
Functions¶
Module Contents¶
- matrix_props.majorizes.majorizes(a_var, b_var)¶
Determine if one vector or matrix majorizes another [1].
Given \(a, b \in \mathbb{R}^d\), we say that \(a\) weakly majorizes (or dominates) \(b\) from below if and only if
\[\sum_{i=1}^k a_i^{\downarrow} \geq \sum_{i=1}^k b_i^{\downarrow}\]for all \(k \in \{1, \ldots, d\}\).
This function was adapted from the QETLAB package.
Examples
Simple example illustrating that the vector \((3, 0, 0)\) majorizes the vector \((1, 1, 1)\).
>>> from toqito.matrix_props import majorizes >>> majorizes([3, 0, 0], [1, 1, 1]) True
The majorization criterion says that every separable state \(\rho \in \text{D}(\mathcal{A} \otimes \mathcal{B})\) is such that \(\text{Tr}_{\mathcal{B}}(\rho)\) majorizes \(\text{Tr}_{\mathcal{A}}(\rho)\).
>>> from toqito.matrix_props import majorizes >>> from toqito.states import max_entangled >>> from toqito.channels import partial_trace >>> >>> v_vec = max_entangled(3) >>> rho = v_vec @ v_vec.conj().T >>> majorizes(partial_trace(rho, [1]), rho) False
References
- Parameters:
a_var (numpy.ndarray | list[int]) – Matrix or vector provided as list or np.array.
b_var (numpy.ndarray | list[int]) – Matrix or vector provided as list or np.array.
- Returns:
Return
True
ifa_var
majorizesb_var
andFalse
otherwise.- Return type:
bool