states.pusey_barrett_rudolph ============================ .. py:module:: states.pusey_barrett_rudolph .. autoapi-nested-parse:: Construct a set of mutually unbiased bases. Functions --------- .. autoapisummary:: states.pusey_barrett_rudolph.pusey_barrett_rudolph Module Contents --------------- .. py:function:: pusey_barrett_rudolph(n, theta) Produce set of Pusey-Barrett-Rudolph (PBR) states :footcite:`Pusey_2012_On`. Let :math:`\theta \in [0, \pi/2]` be an angle. Define the states .. math:: |\psi_0\rangle = \cos(\frac{\theta}{2})|0\rangle + \sin(\frac{\theta}{2})|1\rangle \quad \text{and} \quad |\psi_1\rangle = \cos(\frac{\theta}{2})|0\rangle - \sin(\frac{\theta}{2})|1\rangle. For some :math:`n \geq 1`, define a basis of :math:`2^n` states where .. math:: |\Psi_i\rangle = |\psi_{x_i}\rangle \otimes \cdots \otimes |\psi_{x_n}\rangle. These PBR states are defined in Equation (A6) from :footcite:`Pusey_2012_On`. .. rubric:: Examples Generating the PBR states can be done by simply invoking the function with a given choice of :code:`n` and :code:`theta`: .. jupyter-execute:: from toqito.states import pusey_barrett_rudolph pusey_barrett_rudolph(n=1, theta=0.5) .. rubric:: References .. footbibliography:: :param n: The number of states in the set. :param theta: Angle parameter that defines the states. :return: Vector of trine states.