# Source code for toqito.nonlocal_games.xor_game

"""Two-player XOR game."""
import cvxpy
import numpy as np

[docs]class XORGame:
r"""
Create two-player XOR game object.

Calculates the optimal probability that Alice and Bob win the game if they
are allowed to determine a join strategy beforehand, but not allowed to
communicate during the game itself.

The quantum value of an XOR game can be solved via the semidefinite program
from [CHTW04]_.

This function is adapted from the QETLAB package.

Examples
==========

The CHSH game

The CHSH game is a two-player nonlocal game with the following probability
distribution and question and answer sets [CSUU08]_.

.. math::

\begin{aligned} \pi(x,y) = \frac{1}{4}, \qquad (x,y) \in
\Sigma_A \times
\Gamma_B,
\end{aligned}

where

.. math::

\Sigma_A = \{0, 1\}, \quad \Sigma_B = \{0, 1\}, \quad \Gamma_A =

Alice and Bob win the CHSH game if and only if the following equation is
satisfied

.. math::

a \oplus b = x \land y.

Recall that :math:\oplus refers to the XOR operation.

The optimal quantum value of CHSH is :math:\cos(\pi/8)^2 \approx 0.8536
where the optimal classical value is :math:3/4.

In order to specify the CHSH game, we can define the probability matrix and
predicate matrix for the CHSH game as numpy arrays as follows.

>>> import numpy as np
>>> prob_mat = np.array([[1 / 4, 1 / 4], [1 / 4, 1 / 4]])
>>> pred_mat = np.array([[0, 0], [0, 1]])

In toqito, we can calculate both the quantum and classical value of the
CHSH game as follows.

>>> import numpy as np
>>> from toqito.nonlocal_games.xor_game import XORGame
>>> chsh = XORGame(prob_mat, pred_mat)
>>> chsh.quantum_value()
0.8535533885683664
>>>
>>> chsh.classical_value()
0.75

The odd cycle game

The odd cycle game is another XOR game [CHTW04]_. For this game, we can
specify the probability and predicate matrices as follows.

>>> prob_mat = np.array(
>>> [
>>>     [0.1, 0.1, 0, 0, 0],
>>>     [0, 0.1, 0.1, 0, 0],
>>>     [0, 0, 0.1, 0.1, 0],
>>>     [0, 0, 0, 0.1, 0.1],
>>>     [0.1, 0, 0, 0, 0.1],
>>> ]
>>> )
>>> pred_mat = np.array(
>>> [
>>>     [0, 1, 0, 0, 0],
>>>     [0, 0, 1, 0, 0],
>>>     [0, 0, 0, 1, 0],
>>>     [0, 0, 0, 0, 1],
>>>     [1, 0, 0, 0, 0],
>>> ]
>>> )

In :code:toqito, we can calculate both the quantum and classical value of
the odd cycle game as follows.

>>> import numpy as np
>>> from toqito.nonlocal_games.xor_game import XORGame
>>> odd_cycle = XORGame(prob_mat, pred_mat)
>>> odd_cycle.quantum_value()
0.9755282544736033
>>> odd_cycle.classical_value()
0.9

References
==========
.. [CSUU08] Richard Cleve, William Slofstra, Falk Unger, Sarvagya Upadhyay
"Strong parallel repetition theorem for quantum XOR proof systems",
2008,
https://arxiv.org/abs/quant-ph/0608146

.. [CHTW04] Richard Cleve, Peter Hoyer, Ben Toner, John Watrous
"Consequences and limits of nonlocal strategies."
Proceedings. 19th IEEE Annual Conference on Computational Complexity,
IEEE, 2004.
https://arxiv.org/abs/quant-ph/0404076
"""

def __init__(
self,
prob_mat: np.ndarray,
pred_mat: np.ndarray,
reps: int = 1,
tol: float = None,
) -> None:
"""
Construct XOR game object.

:raises ValueError: If dimension of probability matrix is not equal to
dimension of predicate matrix.
:param prob_mat: A matrix whose (q_0, q_1)-entry gives the probability that
the referee will give Alice the value q_0 and Bob the
value q_1.
:param pred_mat: A binary matrix whose (q_0, q_1)-entry indicates the
winning choice (either 0 or 1) when Alice and Bob receive
values q_0 and q_1 from the referee.
:param tol: The error tolerance for the value.
"""
self.prob_mat = prob_mat
self.pred_mat = pred_mat
self.reps = reps

q_0, q_1 = self.prob_mat.shape
if tol is None:
self.tol = np.finfo(float).eps * q_0**2 * q_1**2
else:
self.tol = tol

# Perform some basic error checking to ensure the probability and
# predicate matrices are well-defined.
if (q_0, q_1) != self.pred_mat.shape:
raise ValueError(
"Invalid: The matrices prob_mat and pred_mat must"
" be matrices of the same size."
)
if -np.min(np.min(self.prob_mat)) > self.tol:
raise ValueError(
"Invalid: The variable prob_mat must be a "
"probability matrix: its entries must be "
"non-negative."
)
if np.abs(np.sum(np.sum(self.prob_mat)) - 1) > self.tol:
raise ValueError(
"Invalid: The variable prob_mat must be a "
"probability matrix: its entries must sum to 1."
)

[docs]    def quantum_value(self) -> float:
r"""
Compute the quantum value of the XOR game.

To obtain the quantum value of the XOR game, we calculate the following
simplified dual problem of the semidefinite program from the set of
notes: https://cs.uwaterloo.ca/~watrous/CS867.Winter2017/Notes/06.pdf

.. math::

\begin{aligned}
\text{minimize:} \quad & \frac{1}{2} \sum_{x \in X} u(x) +
\frac{1}{2} \sum_{y \in Y} v(y) \\
\begin{pmatrix}
\text{Diag}(u) & -D \\
-D^* & \text{Diag}(v)
\end{pmatrix} \geq 0, \\
& u \in \mathbb{R}^X, \
v \in \mathbb{R}^Y.
\end{aligned}

where :math:D is the matrix defined to be

.. math::
D(x,y) = \pi(x, y) (-1)^{f(x,y)}

In other words, :math:\pi(x, y) corresponds to :code:prob_mat[x, y],
and :math:f(x,y) corresponds to :code:pred_mat[x, y].

:return: A value between [0, 1] representing the quantum value.
"""
alice_in, bob_in = self.prob_mat.shape
d_mat = np.zeros([alice_in, bob_in])

for x_alice in range(alice_in):
for y_bob in range(bob_in):
d_mat[x_alice, y_bob] = self.prob_mat[x_alice, y_bob] * (-1) ** (
self.pred_mat[x_alice, y_bob]
)

u_vec = cvxpy.Variable(alice_in, complex=False)
v_vec = cvxpy.Variable(bob_in, complex=False)

objective = cvxpy.Minimize(cvxpy.sum(u_vec) + cvxpy.sum(v_vec))
constraints = [
cvxpy.bmat(
[
[cvxpy.diag(u_vec), -d_mat],
[np.negative(d_mat.conj().T), cvxpy.diag(v_vec)],
]
)
>> 0
]

problem = cvxpy.Problem(objective, constraints)
problem.solve()

if self.reps == 1:
return np.real(problem.value) / 4 + 1 / 2
# It holds from (https://arxiv.org/abs/quant-ph/0608146) that the
# quantum value of any XOR game obeys strong parallel repetition. That
# is, it holds that:
#   \omega^*(G^{^n}) = \omega^*(G)^n,
# where G^{^n} denotes playing the game G n-times.
return (np.real(problem.value) / 4 + 1 / 2) ** self.reps

[docs]    def classical_value(self) -> float:
"""
Compute the classical value of the XOR game.

:raises ValueError: Does not support parallel repetitions.
:return: A value between [0, 1] representing the classical value.
"""
if self.reps == 1:
q_0, q_1 = self.prob_mat.shape

# At worst, out winning probability is 0. Now, try to improve.
val = 0

# Find the maximum probability of winning (this is NP-hard, so don't
# expect an easy way to do it: just loop over all strategies.

for a_ans in range(2**q_0):
for b_ans in range(2**q_1):
a_vec = (a_ans >> np.arange(q_0)) & 1
b_vec = (b_ans >> np.arange(q_1)) & 1

# Now compute the winning probability under this strategy:
# XOR together Alice's responses and Bob's responses, then
# check where the XORed value equals the value in the given
# matrix. Where the values match, multiply by the
# probability of getting that pair of questions (i.e.,
# multiply by the probability of getting that pair of
# questions (i.e., multiply entry-wise by P) and then sum
# over the rows and columns.
classical_strategy = np.mod(
np.multiply(a_vec.conj().T.reshape(-1, 1), np.ones((1, q_1)))
+ np.multiply(np.ones((q_0, 1)), b_vec),
2,
)
p_win = np.sum(
np.sum(np.multiply(classical_strategy == self.pred_mat, self.prob_mat))
)
# Is this strategy better than other ones tried so far?
val = max(val, p_win)