matrix_props.is_anti_hermitian¶
Checks if the matrix is an anti-Hermitian matrix.
Functions¶
|
Check if matrix is anti-Hermitian (a.k.a. skew-Hermitian) [1]. |
Module Contents¶
- matrix_props.is_anti_hermitian.is_anti_hermitian(mat, rtol=1e-05, atol=1e-08)¶
Check if matrix is anti-Hermitian (a.k.a. skew-Hermitian) [1].
An anti-Hermitian matrix is a complex square matrix that is equal to the negative of its own conjugate transpose.
Examples
Consider the following matrix:
\[\begin{split}A = \begin{pmatrix} 2j & -1 + 2j & 4j \\ 1 + 2j & 3j & -1 \\ 4j & 1 & 1j \end{pmatrix}\end{split}\]our function indicates that this is indeed an anti-Hermitian matrix as it holds that
\[A = -A^*.\]>>> from toqito.matrix_props import is_anti_hermitian >>> import numpy as np >>> mat = np.array([[2j, -1 + 2j, 4j], [1 + 2j, 3j, -1], [4j, 1, 1j]]) >>> is_anti_hermitian(mat) True
Alternatively, the following example matrix \(B\) defined as
\[\begin{split}B = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}\end{split}\]is not anti-Hermitian.
>>> from toqito.matrix_props import is_anti_hermitian >>> import numpy as np >>> mat = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) >>> is_anti_hermitian(mat) False
References
[1] (1,2)Wikipedia. Skew-hermitian matrix. URL: https://en.wikipedia.org/wiki/Skew-Hermitian_matrix.
- Parameters:
mat (numpy.ndarray) – Matrix to check.
rtol (float) – The relative tolerance parameter (default 1e-05).
atol (float) – The absolute tolerance parameter (default 1e-08).
- Returns:
Return True if matrix is anti-Hermitian, and False otherwise.
- Return type:
bool