channels.bitflip¶
Implements the bitflip quantum gate channel.
Functions¶
|
Apply the bitflip quantum channel to a state or return the Kraus operators. |
Module Contents¶
- channels.bitflip.bitflip(input_mat=None, prob=0)¶
Apply the bitflip quantum channel to a state or return the Kraus operators.
The bitflip channel is a quantum channel that flips a qubit from \(|0\rangle\) to \(|1\rangle\) and from \(|1\rangle\) to \(|0\rangle\) with probability \(p\). It is defined by the following operation:
\[\mathcal{E}(\rho) = (1-p) \rho + p X \rho X\]where \(X\) is the Pauli-X (NOT) gate given by:
\[\begin{split}X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}\end{split}\]The Kraus operators for this channel are:
\[\begin{split}K_0 = \sqrt{1-p} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad K_1 = \sqrt{p} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}\end{split}\]Examples
We can generate the Kraus operators for the bitflip channel with probability 0.3:
from toqito.channels import bitflip bitflip(prob=0.3)
[array([[0.83666003, 0. ], [0. , 0.83666003]]), array([[0. , 0.54772256], [0.54772256, 0. ]])]
We can also apply the bitflip channel to a quantum state. For the state \(|0\rangle\), the bitflip channel with probability 0.3 produces:
import numpy as np from toqito.channels import bitflip rho = np.array([[1, 0], [0, 0]]) # |0><0| bitflip(rho, prob=0.3)
array([[0.7+0.j, 0. +0.j], [0. +0.j, 0.3+0.j]])
References
- Parameters:
input_mat (numpy.ndarray | None) – A matrix or state to apply the channel to. If None, returns the Kraus operators.
prob (float) – The probability of a bitflip occurring.
- Returns:
Either the Kraus operators of the bitflip channel if input_mat is None, or the result of applying the channel to input_mat.
- Return type:
numpy.ndarray