channel_ops.natural_representation¶
Kraus operators to natural representation.
Functions¶
|
Convert a set of Kraus operators to the natural representation of a quantum channel. |
Module Contents¶
- channel_ops.natural_representation.natural_representation(kraus_ops)¶
Convert a set of Kraus operators to the natural representation of a quantum channel.
The natural representation of a quantum channel is given by: \(\Phi = \sum_i K_i \otimes K_i^*\) where \(K_i^*\) is the complex conjugate of \(K_i\).
Examples
>>> import numpy as np >>> from toqito.channel_ops import natural_representation >>> k0 = np.sqrt(1/2) * np.array([[1, 0], [0, 1]]) >>> k1 = np.sqrt(1/2) * np.array([[0, 1], [1, 0]]) >>> print(natural_representation([k0, k1])) [[0.5 0. 0. 0.5] [0. 0.5 0.5 0. ] [0. 0.5 0.5 0. ] [0.5 0. 0. 0.5]]
- Parameters:
kraus_ops (list[numpy.ndarray])
- Return type:
numpy.ndarray