channel_props.is_quantum_channel ================================ .. py:module:: channel_props.is_quantum_channel .. autoapi-nested-parse:: Determines if an input is a quantum channel. Functions --------- .. autoapisummary:: channel_props.is_quantum_channel.is_quantum_channel Module Contents --------------- .. py:function:: is_quantum_channel(phi, rtol = 1e-05, atol = 1e-08) Determine whether the given input is a quantum channel. For more info, see Section 2.2.1: Definitions and Basic Notions Concerning Channels from :cite:`Watrous_2018_TQI`. A map :math:`\Phi \in \text{T} \left(\mathcal{X}, \mathcal{Y} \right)` is a *quantum channel* for some choice of complex Euclidean spaces :math:`\mathcal{X}` and :math:`\mathcal{Y}`, if it holds that: 1. :math:`\Phi` is completely positive. 2. :math:`\Phi` is trace preserving. .. rubric:: Examples We can specify the input as a list of Kraus operators. Consider the map :math:`\Phi` defined as .. math:: \Phi(X) = X - U X U^* where .. math:: U = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}. To check if this is a valid quantum channel or not, .. jupyter-execute:: import numpy as np from toqito.matrices import pauli from toqito.channel_props import is_quantum_channel U = (1/np.sqrt(2))*np.array([[1, 1],[-1, 1]]) X = pauli("X") phi = X - np.matmul(U, np.matmul(X, np.conjugate(U))) is_quantum_channel(phi) If we instead check for the validity of depolarizing channel being a valid quantum channel, .. jupyter-execute:: from toqito.channels import depolarizing from toqito.channel_props import is_quantum_channel choi_depolarizing = depolarizing(dim=2, param_p=0.2) is_quantum_channel(choi_depolarizing) .. rubric:: References .. bibliography:: :filter: docname in docnames :param phi: The channel provided as either a Choi matrix or a list of Kraus operators. :param rtol: The relative tolerance parameter (default 1e-05). :param atol: The absolute tolerance parameter (default 1e-08). :return: :code:`True` if the channel is a quantum channel, and :code:`False` otherwise.